Journal of Organometallic Chemistry, 431 (1992) 171–176 Elsevier Sequoia S.A., Lausanne JOM 22518

Synthese des neuartigen organometallischen Molybdän-Antimon-Clusters $(\mu_4$ -Sb)₂Cp₄Mo₅(CO)₁₄

Marc Gorzellik, Bernhard Nuber und Manfred L. Ziegler[†]

Anorg. Chem. Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg (Deutschland)

(Eingegangen am 19. November 1991)

Abstract

Reaction of NaCpMo(CO)₃ (1) with SbCl₃ (2) in diglyme yields the complex $(\mu_4$ -Sb)₂Cp₄Mo₅(CO)₁₄ (3), the structure of which consists of an Mo₂Sb₂ butterfly cluster with a bridging CpMo(CO)₂ fragment. Additionally, a CpMo(CO)₃ fragment is coordinated at one antimony atom and a Mo(CO)₅ fragment is coordinated at the other antimony atom.

Zusammenfassung

Die Umsetzung von NaCpMo(CO)₃ (1) mit SbCl₃ (2) in Diglyme ergibt den Komplex $(\mu_4$ -Sb)₂Cp₄ Mo₅(CO)₁₄ (3). 3 besitzt die Grundstruktur eines mit einem CpMo(CO)₂-Fragment überbrückten Mo₂Sb₂-"butterfly"-Clusters. An ein Antimonatom ist zusätzlich ein CpMo(CO)₃-Fragment koordiniert; am anderen Antimonatom ist ein Mo(CO)₅-Fragment angelagert.

Einleitung

Verbindungen zwischen Übergangsmetallen und nackten Elementen der fünften Hauptgruppe wurde in den letzten Jahren großes Interesse geschenkt [1]. Hierbei interessieren uns besonders die Tetrahedransysteme, die neben metallorganischen Übergangsmetallfragmenten nackte Hauptgruppenelemente E (E = P, As, Sb, Bi) aufweisen. So eignet sich z.B. die Reaktion von NaCpMo(CO)₃ (1) mit ECl₃ (E = P, As, Sb, Bi) hervorragend zur Synthese solcher Verbindungen [2]. Um unsere Untersuchungen zur Reaktivität von Tetrahedranen, die nacktes Arsen neben metallorganischen Molybdänfragmenten aufweisen [3] auch auf Cluster auszudehnen, die andere Pnycogenatome neben metallorganischen Molybdänfrag-

Correspondence to: Prof. Dr. Gottfried Huttner, Anorg. Chem. Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg, Deutschland.

[†] Verstorben am 30. April 1991.

menten enthalten, strebten wir die Synthese der entsprechenden Mo_2E_2 - bzw. Mo_3E -Tetrahedrangerüste an.

Die Umsetzung von NaCpMo(CO)₃ (1) mit SbCl₃ (2) bzw. BiCl₃ im Verhältnis 3/1 in THF führte zu den Komplexen μ_3 -SbCp₃Mo₃(CO)₉ [2c] und μ_3 -BiCp₃Mo₃(CO)₉ [2d]. Beide Verbindungen besitzen ein trigonal-pyramidales Mo₃E-Grundgerüst ohne Mo-Mo-Bindungen. Durch Photolyse von μ_3 -BiCp₃Mo₃(CO)₉ in THF erhält man das Metallatetrahedran Bi₂Cp₂Mo₂(CO)₄ [2e]. Einen leichteren Zugang zu Tetrahedranclustern eröffnet die Variation des Lösungsmittels. So führt die Umsetzung von 1 mit PCl₃ in Diglyme je nach Reaktionsbedingungen direkt zu den Metallatetrahedranen P₂Cp₂Mo₂(CO)₄ bzw. PCp₃Mo₃(CO)₆ [2a].

Bei unseren Versuchen, dieses Syntheseprinzip auch zur Synthese der analogen Antimonverbindungen einzusetzen, erhielten wir unerwartet den Komplex (μ_4 -Sb)₂Cp₄Mo₅(CO)₁₄ (3). 3 wurde spektroskopisch und röntgenstrukturanalytisch charakterisiert.

Ergebnisse und Diskussion

Die Umsetzung von 1 mit 2 (1/1) in Diglyme liefert neben $Cp_2Mo_2(CO)_6$ die Verbindung (μ_4 -Sb)₂ $Cp_4Mo_5(CO)_{14}$ (3).

 $NaCpMo(CO)_3 + SbCl_3 \longrightarrow Cp_2Mo_2(CO)_6 +$

 $Mo = CpMo(CO)_2$

Das IR-Spektrum von 3 zeigt die Banden terminaler Carbonylgruppen. Im ¹H-NMR-Spektrum treten vier Singuletts für die Protonen der Cp-Ringe auf. Im Massenspektrum wird kein Molekülpeak beobachtet. Lediglich das Abbaufragment von 3, Sb₂[CpMo(CO)₂]₂ (m/e 678), tritt mit einer für das Mo₂Sb₂-Fragment charakteristischen Isotopenverteilung auf. Da allein aufgrund der spektroskopischen Daten kein Strukturvorschlag für 3 möglich war, wurde an der Verbindung eine Röntgenstrukturanalyse durchgeführt.

Figur 1 zeigt die Molekülstruktur von 3. In Tab. 1 sind die Ortsparameter und isotropen Temperaturfaktoren zusammengefaßt, in Tab. 2 sind ausgewählte Bindungsabstände und -winkel zusammengestellt. Das Grundgerüst von 3 besteht aus einer Mo_2Sb_2 -"butterfly"-Einheit, in der zusätzlich die Sb-Atome mit einem CpMo(CO)₂-Fragment überbrückt sind. An Sb(1) ist zusätzlich ein Mo(CO)₅-Fragment, an Sb(2) ein CpMo(CO)₃-Fragment koordiniert. 3 erfüllt somit die 18-

Fig. 1. Moleküldarstellung von 3. Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

Elektronenregel. Jedes Antimonatom fungiert als Fünfelektronendonor. Das $Mo(CO)_5$ stammt aus nicht vollständig umgesetzten $Mo(CO)_6$. Der Abstand Sb(1)-Sb(2) (305.0(2) pm) ist als nichtbindend einzuordnen (Kovalenzradius Sb 140 pm [4]). Antimon-Antimon-Einfachbindungsabstände liegen im Bereich von 284 pm bis 291 pm [5]. Alle übrigen Metall-Metall-Bindungsabstände (Mo(2)-Mo(3) 318.9(3) pm [vgl. 3a], Mo-Sb 276.4(3) pm bis 293.4(3) pm [vgl. 2c]) liegen in dem Bereich, in dem Einfachbindungen bei vergleichbaren Molekülen auftreten. Die Ebenen von Mo(2)-Mo(3)-Sb(1) und Mo(2)-Mo(3)-Sb(2) bilden zueinander einen Winkel von 99.1(1)°. Dies ist ein weiteres Indiz gegen eine Sb-Sb-Bindung und für eine überbrückte butterfly-Struktur [6].

3 weist nur terminale Carbonylgruppen auf. Die Mo-C- und C-O-Bindungsabstände liegen im Erwartungsbereich [3c]. Die Abstände Mo-C(Cp) sind mit 231(2) pm bis 233(3) pm innerhalb der Standardabweichung identisch und liegen im erwarteten Bereich [3a].

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit und unter Verwendung argongesättigter, wasserfreier Lösungsmittel durchgeführt [7,8]. Die Trennung der Reaktionsprodukte erfolgte säulenchromatographisch (Mitteldrucksäule der Firma Büchi (460/32 mm) mit Kühlmantel, stationäre Phase: Kieselgel 60 (0.04–0.063 mm) der Firma Merck). Der Schmelzpunkt wurde auf einem Schmelztisch mit Monoskop VS der Firma Hans Bock ermittelt und ist korrigiert. Das IR-Spektrum wurde mit dem Gerät Perkin–Elmer 983 registriert (vst, sehr stark; m, mittelstark). Die Probe für das ¹H-NMR-Spektrum wurde unter Argon abgefüllt; das Lösungsmittel diente als Bezug (Bruker WH 300, 300 MHz). Die Aufnahme des Massenspektrums erfolgte an dem Gerät Finnigan MAT 8200. Die

Lageparameter (×10⁴) und thermische Parameter (×10³) von (μ_4 -Sb)₂Cp₄Mo₅(CO)₁₄ (3)

Atom	x	у	Z	U _{equiv.}
Sb(1)	-690(1)	3092(1)	7947(1)	32(1)
Sb(2)	1182(1)	693(1)	7136(1)	35(1)
Mo(1)	- 2417(2)	5314(2)	8705(1)	43(1)
C(1)	- 3896(21)	4638(18)	8769(14)	62(12)
O(1)	-4751(15)	4258(15)	8832(11)	92(10)
C(2)	- 896(20)	5880(16)	8680(14)	53(11)
O(2)	- 63(15)	6232(14)	8690(10)	82(9)
C(3)	- 3752(21)	6891(20)	9209(12)	58(11)
O(3)	- 4526(16)	7775(14)	9483(11)	104(10)
C(4)	- 2418(20)	4613(19)	9879(13)	52(10)
O(4)	- 2331(17)	4275(15)	10520(10)	87(10)
C(5)	- 2329(19)	6110(20)	7556(14)	54(11)
O(5)	- 2279(16)	6605(14)	6933(10)	76(9)
Mo(2)	- 591(2)	2376(2)	6411(1)	39(1)
C(6)	- 2521(20)	3062(19)	6847(12)	49(10)
O(6)	- 3612(15)	3566(14)	6999(10)	82(9)
C (7)	- 897(21)	931(21)	6021(13)	58(12)
O(7)	- 1095(18)	202(14)	5732(10)	96(11)
C(21)	- 505(24)	3241(20)	5133(12)	68(13)
C(22)	765(21)	2490(18)	5095(12)	54(11)
C(23)	1241(22)	2992(19)	5627(12)	58(12)
C(24)	279(23)	4077(19)	5989(12)	59(12)
C(25)	- 793(21)	4240(15)	5690(12)	52(358)
Mo(3)	- 1445(2)	815(1)	8081(1)	34(1)
C(8)	- 54(18)	-468(19)	8476(13)	49(11)
O(8)	598(14)	- 1255(13)	8759(10)	77(9)
C(9)	- 1748(21)	1570(17)	9075(13)	48(11)
O(9)	- 2052(14)	1901(11)	9768(8)	57(7)
C(26)	- 3644(24)	1169(22)	8294(25)	85(18)
C(27)	- 3362(27)	460(36)	8924(18)	91(17)
C(28)	- 2487(28)	- 656(28)	8575(23)	92(18)
C(29)	- 2352(22)	- 560(25)	7/02(22)	93(17)
C(30)	- 3127(33)	635(34)	7580(18)	103(22)
Mo(4)	1917(2)	2198(2)	/9/4(1) (00((14)	40(1) 60(12)
C(10)	3416(23)	1//3(18)	0990(14)	00(12)
O(10)	4331(15)	13/8(10)	7393(11)	59(10)
	1891(20)	3824(21)	7303(13)	08(12)
O(11)	1914(17)	4/01(13)	/100(11)	50(10) 67(12)
C(31)	1010(21)	2119(23)	9420(12)	68(14)
C(32)	2057(22)	2333(21)	8886(15)	70(13)
C(33)	2937(22)	1166(24)	8868(12)	70(13)
C(34)	1808(24)	918(20)	9203(12)	61(13)
Ma(5)	3045(2)	- 1595(2)	6419(1)	52(1)
$\alpha(12)$	1364(20)	-1877(19)	6587(15)	59(11)
O(12)	421(15)	-2140(14)	6715(11)	90(10)
C(13)	3246(19)	- 172(22)	5534(14)	63(12)
O(13)	3457(16)	452(17)	5012(11)	102(10)
C(14)	3356(21)	-2388(21)	5400(15)	68(13)
O(14)	3512(17)	- 2915(16)	4808(12)	110(12)
C(36)	4721(30)	- 1603(29)	6934(22)	104(19)
C(37)	3753(31)	- 1700(26)	7607(25)	117(22)
C(38)	3486(24)	- 2792(32)	7567(15)	107(17)
C(39)	4413(26)	- 3393(22)	6820(19)	97(358)
C(40)	5143(22)	- 2608(31)	6398(17)	102(16)

Tabelle 2

Sb(1)-Sb(2)	305.0(2)	Sb(1)-Mo(1)	282.6(3)	Sb(1)-Mo(2)	278.8(3)
Sb(1)-Mo(3)	293.4(3)	Sb(1)-Mo(4)	281.1(3)	Sb(2)-Mo(2)	276.4(3)
Mo(2)-Mo(3)	318.9(3)	Sb(2)-Mo(3)	287.8(3)	Sb(2)-Mo(4)	281.3(3)
Sb(2)-Mo(5)	290.2(3)				
Sb(2)-Sb(1)-Mo(1)	1 79.7(1)	Sb(2)-Sb(1)-Mo(2)	56.3(1)	Sb(1)-Sb(2)-Mo(2)	57.1(1)
Mo(1)-Sb(1)-Mo(2)	124.0(1)	Sb(2)-Sb(1)-Mo(4)	57.2(1)	Sb(1)-Sb(2)-Mo(3)	59.2(1)
Sb(2)-Sb(1)-Mo(3)	57.5(1)	Mo(1)-Sb(1)-Mo(4)	122.5(1)	Mo(2)-Sb(2)-Mo(3)	68.8(1)
Mo(1)-Sb(1)-Mo(3)	122.7(1)	Mo(2)-Sb(1)-Mo(4)	103.2(1)	Mo(2) - Sb(2) - Mo(4)	103.8(1)
Mo(2)-Sb(1)-Mo(3)	67.7(1)	Mo(3)-Sb(1)-Mo(4)	103.3(1)	Mo(3)-Sb(2)-Mo(4)	104.7(1)
Sb(1)-Sb(2)-Mo(4)	57.1(1)	Sb(1)-Mo(4)-Sb(2)	65.7(1)	Sb(1)-Sb(2)-Mo(5)	177.1(1)
$M_0(2)-Sb(2)-M_0(5)$	125.7(1)	Mo(3)-Sb(2)-Mo(5)	122.0(1)	Mo(4)-Sb(2)-Mo(5)	120.1(1)
Sb(1)-Mo(2)-Sb(2)	66.6(1)	Sb(1)-Mo(2)-Mo(3)	58.3(1)	Sb(2)-Mo(2)-Mo(3)	57.3(1)
Sb(1)-Mo(3)-Sb(2)	63.3(1)	Sb(1)-Mo(3)-Mo(2)	54.0(1)	Sb(2)-Mo(3)-Mo(2)	53.9(1)

Ausgewählte Bindungslängen (pm) und Bindungswinkel (°) von $(\mu_4-Sb)_2Cp_4Mo_5(CO)_{14}$ (3)

Elementaranalysen wurden im Mikroanalytischen Labor des Chemischen Instituts Heidelberg ausgeführt.

Umsetzung von NaCpMo(CO)₃ (1) mit SbCl₃ (2); Darstellung von $(\mu_4$ -Sb)₂Cp₄Mo₅-(CO)₁₄ (3)

In einem 250 ml Dreihalskolben werden 110 mg (3.72 mmol) NaH (80% in Weißöl) in 150 ml Diglyme vorgelegt und 0.24 g (3.72 mmol) frisch destilliertes monomeres CpH zugetropft. Zu dem entstandenen NaCp (330 mg) gibt man 1 g Mo(CO)₆ (3.73 mmol) und erhitzt 2 Stunden unter Rückfluß. Dann läßt man die gelbe Lösung abkühlen und fügt 300 mg (3.73 mmol) SbCl₃ (2) zu. Die Reaktionslösung färbt sich sofort rot. Es wird noch eine Stunde nachgerührt und dann das Lösungsmittel abgezogen.

Der Rückstand wird in 10 ml CH_2Cl_2 aufgenommen und über eine gekühlte MPLC-Säule getrennt. Mit Hexan/ CH_2Cl_2 (1/2) erhält man zuerst rotes $Cp_2Mo_2(CO)_6$, dann wenig rotbraunes 3.

Umkristallisieren aus Hexan/CH₂Cl₂ (2/1) liefert **3** in Form von schwarzen Kristallen. Ausbeute: 40 mg (4% bez. 1); Fp.: 153°C. Anal. Gef.: C, 28.95; H, 1.03; $C_{34}H_{20}Mo_5Sb_2O_{14}$ (1375.43) ber.: C, 29.68; H, 1.45%.

EI-MS: 678 Sb₂[CpMo(CO)₂]₂. IR (cm⁻¹), KBr-Festkörperspektrum: 2053m, 2006m, 1916vst, 1865m, 1833m (CO), 820m (CH). ¹H-NMR (CDCl₃, 298 K): δ 5.74, 5.60, 5.55, 5.39 (je s, 5H).

Röntgenstrukturanalyse von $(\mu_4 Sb)_2 Cp_4 Mo_5(CO)_{14}$ (3)

Schwarzer rautenförmiger Kristall $(0.04 \times 0.19 \times 0.27 \text{ mm}^3)$, triklin, Raumgruppe P1 (Nr. 2). Gitterkonstanten: a = 1132.2(7), b = 1135.5(7), c = 1695(1) pm, $\alpha = 82.40(5)$, $\beta = 72.01(5)$, $\gamma = 71.34(4)^\circ$, $V = 1962 \times 10^6 \text{ pm}^3$, Z = 2. Empirische Absorptionskorrektur (ψ -scans, 6 Reflexe, $3.8^\circ < 2\theta < 34.9^\circ$), $\mu = 29.4 \text{ cm}^{-1}$, F(000) = 1356, $d_r = 2.43 \text{ g/cm}^3$, Siemens-STOE AED 2, h - 13/13, k - 13/13, l0/20, Meßbereich $3^\circ < 2\theta < 51^\circ$, 3473 beobachtete Reflexe, davon 3035 unabhängige ($I > 2.5\sigma(I)$). Die Strukturlösung erfolgte mit Patterson-, Fourierund Differenz-Synthesen, alle Nichtwasserstoffatome wurden anisotrop verfeinert, die Lage der H-Atome wurde mit der SHELXTL-Option HFIX [9] berechnet. R = 0.048, $R_w = 0.040$, Restelektronendichte $1.18/-1.06 \text{ e/Å}^3$, shift/esd(max) 0.1, GOOF = 1.71. Die Rechnungen basieren auf dem Programmsystem SHELXTL [9], die Atomformfaktoren wurden der Literatur entnommen [10].

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56007, der Autoren sowie des Zeitschriftenzitats angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247) und dem Fonds der Chemischen Industrie für die Gewährung von Sach- und Personalmitteln. Frau Dr. E. Hey-Hawkins danken wir für die Hilfe bei der Erarbeitung des Manuskripts.

Literatur

- (a) O.J. Scherer, Angew. Chem., 102 (1990) 1137; (b) M. Scheer und E. Herrmann, Z. Chem., 30 (1990) 41; (c) O.J. Scherer, Angew. Chem., 97 (1985) 905; (d) W.A. Herrmann, Angew. Chem., 98 (1986) 57.
- 2 (a) T. Kilthau, Universität Heidelberg, Privatmitteilung, 1991; (b) J. Joachim, Universität Heidelberg, Privatmitteilung, 1991; (c) A.M. Barr, M.D. Kerlogue, N.C. Norman, P.M. Webster und L.J. Farrugia, Polyhedron, 8 (1989) 2495; (d) W. Clegg, N.A. Compton, R.J. Errington und N.C. Norman, J. Organomet. Chem., 335 (1987) C1; (e) W. Clegg, N.A. Compton, R.J. Errington und N.C. Norman, Polyhedron, 7 (1988) 2239.
- 3 (a) H.P. Neumann und M.L. Ziegler, J. Organomet. Chem., 377 (1989) 255; (b) H.P. Neumann und M.L. Ziegler, Chem. Ber., 122 (1989) 25; (c) M.L. Ziegler, K. Blechschmitt, B. Nuber und T. Zahn, Chem. Ber., 121 (1988) 159; (d) G. Huttner, B. Sigwarth, O. Scheidsteger, L. Zsolnai und O. Orama, Organometallics, 4 (1985) 326; (e) M. Gorzellik, B. Nuber, T. Bohn und M.L. Ziegler, J. Organomet. Chem., 429 (1992) 173.
- 4 Table of Periodic Properties of Elements, Sargent-Welch Scientific, Skokie, Illinois.
- 5 (a) K. v. Deuten und D. Rehder, Cryst. Struct. Commun., 9 (1980) 167; (b) J. v. Seyerl und G. Huttner, Cryst. Struct. Commun., 9 (1980) 1099; (c) C.S. Barrett, P. Cucka und K. Haefner, Acta Crystallogr., 16 (1963) 451.
- 6 L.F. Farrugia, J.A. Howard, P. Mitrprachachon, F.G.A. Stone und H. Wadepohl, J. Chem. Soc., Dalton Trans., (1981) 862.
- 7 M.M. Mickiewitz, C.L. Raston, A.H. White, S.B. White und S.B. Wild, Aust. J. Chem., 30 (1977) 1685.
- 8 D.F. Shriver, The Manipulation of Air Sensitive Compounds, McGraw-Hill, New York, 1969.
- 9 W. Sheldrick, SHELXTL-Programm, Universität Göttingen, 1983.
- 10 International Tables for X-Ray Crystallography, Vol. 4, The Kynoch Press, Birmingham, 1974.